Restricted-Recourse Bounds for Stochastic Linear Programming
نویسندگان
چکیده
We consider the problem of bounding the expected value of a linear program (LP) containing random coe&cients, with applications to solving two-stage stochastic programs. An upper bound for minimizations is derived from a restriction of an equivalent, penalty-based formulation of the primal stochastic LP, and a lower bound is obtained from a restriction of a reformulation of the dual. Our “restrictedrecourse bounds” are more general and more easily computed than most other bounds because random coe&cients may appear anywhere in the LP, neither independence nor boundedness of the coe&cients is needed, and the bound is computed by solving a single LP or nonlinear program. Analytical examples demonstrate that the new bounds can be stronger than complementary Jensen bounds. (An upper bound is “complementary” to a lower bound, and vice versa). In computational work, we apply the bounds to a two-stage stochastic program for semiconductor manufacturing with uncertain demand and production rates.
منابع مشابه
The value of the stochastic solution in stochastic linear programs with fixed recourse
Stochastic linear programs have been rarely used in practical situations largely because of their complexity. In evaluating these problems without finding the exact solution, a common method has been to find bounds on the expected value of perfect information. In this paper, we consider a different method. We present bounds on the value of the stochastic solution, that is, the potential benefit...
متن کاملStochastic Programming with Simple Integer Recourse
Stochastic integer programs are notoriously difficult. Very few properties are known and solution algorithms are very scarce. In this paper, we introduce the class of stochastic programs with simple integer recourse, a natural extension of the simple recourse case extensively studied in stochastic continuous programs. Analytical as well as computational properties of the expected recourse funct...
متن کاملOn the information-based complexity of stochastic programming
Existing complexity results in stochastic linear programming using the Turing model depend only on problem dimensionality. We apply techniques from the information-based complexity literature to show that the smoothness of the recourse function is just as important. We derive approximation error bounds for the recourse function of two-stage stochastic linear programs and show that their worst c...
متن کاملA hierarchy of bounds for stochastic mixed-integer programs
Strong relaxations are critical for solving deterministic mixed-integer programs. As solving stochastic mixed-integer programs (SMIPs) is even harder, it is likely that strong relaxations will also prove essential for SMIPs. We consider general two-stage SMIPs with recourse, where integer variables are allowed in both stages of the problem and randomness is allowed in the objective function, th...
متن کاملBarycentric Bounds in Stochastic Programming: Theory and Application
The design and analysis of efficient approximation schemes is of fundamental importance in stochastic programming research. Bounding approximations are particularly popular for providing strict error bounds that can be made small by using partitioning techniques. In this article we develop a powerful bounding method for linear multistage stochastic programs with a generalized nonconvex dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Operations Research
دوره 47 شماره
صفحات -
تاریخ انتشار 1999